Amazon Rekognition Custom Labels
Mengapa Amazon Rekognition Custom Labels?
Dengan Amazon Rekognition Custom Labels, objek dan tampilan dalam gambar dapat diidentifikasi secara khusus sesuai kebutuhan bisnis Anda. Misalnya, Anda dapat menemukan logo Anda di postingan media sosial, mengidentifikasi produk Anda di etalase toko, mengklasifikasikan komponen mesin dalam lini perakitan, membedakan tanaman sehat dengan terinfeksi, atau mendeteksi karakter beranimasi dalam video.
Mengembangkan model khusus untuk menganalisis gambar merupakan tindakan penting yang memerlukan keahlian waktu dan sumber daya, sering kali diselesaikan dalam beberapa bulan. Selain itu, pengembangan model khusus ini sering kali memerlukan ribuan atau puluhan ribu gambar yang pelabelannya dilakukan secara manual agar model memiliki data yang cukup untuk dapat membuat keputusan secara akurat. Data yang dihasilkan ini memakan waktu berbulan-bulan untuk dikumpulkan dan memerlukan tim pemberi label yang besar untuk menyiapkannya agar digunakan di machine learning.
Dengan Amazon Rekognition Custom Labels, kami akan mengurus semua pekerjaan berat untuk Anda. Rekognition Custom Labels dibuat dari kemampuan Rekognition yang sudah ada, yang sudah dilatih di puluhan juta gambar di banyak kategori. Alih-alih ribuan gambar, Anda hanya perlu mengunggah serangkaian kecil gambar pelatihan (biasanya beberapa ratus gambar atau kurang) yang khusus untuk kasus penggunaan Anda ke konsol yang mudah digunakan. Jika gambar Anda sudah memiliki label, Rekognition dapat memulai pelatihan hanya dalam beberapa klik. Jika belum, Anda dapat langsung memberi label di antarmuka pelabelan Rekognition, atau menggunakan Amazon SageMaker Ground Truth guna memberi label untuk Anda. Setelah Rekognition memulai pelatihan dari serangkaian gambar Anda, model analisis gambar khusus akan dihasilkan hanya dalam beberapa jam. Di balik pelatihan tersebut, Rekognition Custom Labels secara otomatis memuat dan memeriksa data pelatihan, memilih algoritme machine learning yang tepat, melatih model, dan memberikan metrik performa model. Kemudian Anda dapat menggunakan model khusus melalui API Rekognition Custom Labels dan mengintegrasikannya ke aplikasi Anda.
Kasus penggunaan
Fitur
Pelanggan
-
NFL
Dalam lanskap media saat ini, volume konten tidak terstruktur yang dikelola oleh organisasi berkembang secara eksponensial. Dengan menggunakan alat tradisional, pengguna dapat mengalami kesulitan dalam mencari ribuan aset media untuk menemukan elemen khusus yang mereka cari. Dengan menggunakan fitur baru di Amazon Rekognition Custom Labels, kami dapat menghasilkan tag metadata secara otomatis yang disesuaikan dengan kasus penggunaan khusus untuk bisnis kami dan memberikan facet yang dapat dicari untuk tim pembuatan konten kami. Ini secara signifikan meningkatkan kecepatan kami dapat mencari konten dan yang lebih pentingnya lagi, memungkinkan kami secara otomatis melabeli elemen yang sebelumnya memerlukan upaya manual. Alat ini memungkinkan tim produksi kami memanfaatkan data secara langsung dan memberikan produk yang disempurnakan kepada pelanggan di seluruh platform media.
Brad Boim, Direktur Senior (Senior Director), Pascaproduksi & Manajemen Aset (Post Production & Asset Management), NFL Media -
VidMob
Dengan pengantar Amazon Rekognition Custom Labels, pemasar akan dibekali dengan kemampuan lanjutan di dalam Agile Creative Studio kami sehingga mereka dapat membangun dan melatih produk tertentu (label kustom) yang ingin dimasukkan ke dalam iklan, dalam skala besar, dan dalam hitungan menit. Secara historis, pelanggan telah berhasil mengidentifikasi objek umum dengan menggunakan integrasi Amazon Rekognition VidMob, tetapi sekarang kemampuan baru untuk label kustom membuat platform kami makin ditargetkan untuk setiap bisnis. Dengan peningkatan performa kreatif sebesar 150% dan pengurangan waktu *analis manusia* sebesar 30%, hal ini secara adaptif akan memperluas kemampuan mereka untuk mengukur performa kreatif menggunakan Agile Creative Studio VidMob.
Alex Collmer, CEO - VidMob -
Prodege
Prodege adalah sebuah platform pemasaran & wawasan pelanggan berbasis data yang terdiri dari beberapa merek pelanggan—Swagbucks, MyPoints, Tada, ySense, InboxDollars, InboxPounds, DailyRewards, dan Upromise—lengkap dengan rangkaian solusi bisnis gratis untuk pemasar dan peneliti.
Prodege menggunakan Amazon Rekognition Custom Labels untuk mendeteksi anomali dalam tanda terima toko. Dengan menggunakan Amazon Rekognition Custom Labels, Prodege dapat mendeteksi anomali dengan presisi yang tinggi di banyak gambar tanda terima toko yang diunggah oleh anggota kami yang berharga sebagai bagian dari penawaran program hadiah kami. Bagian terbaik dari Amazon Rekognition Custom Labels adalah mudah disiapkan, hanya memerlukan serangkaian kecil gambar praklasifikasi (dua ratusan dalam kasus kami) untuk melatih model ML agar deteksi gambar memiliki keyakinan tinggi. Titik akhir model dapat diakses dengan mudah menggunakan API. Amazon Rekognition Custom Labels menjadi solusi yang paling efektif untuk memungkinkan produk pemindaian tanda terima yang tervalidasi dapat berfungsi dengan lancar dan membantu kami menghemat banyak waktu dan sumber daya yang melakukan deteksi manual. Saya bahkan tidak bisa berhenti berterima kasih kepada Tim Dukungan AWS yang dengan tekun telah memberikan bantuan dalam semua aspek produk melalui perjalanan ini.
Arun Gupta, Direktur (Director), Kecerdasan Bisnis (Business Intelligence) - Prodege, LLC