Amazon Rekognition Custom Labels 요금
Amazon Rekognition Custom Labels를 선택해야 하는 이유
Amazon Rekognition Custom Labels를 사용하면 비즈니스 요구 사항에 특화된 이미지에서 객체와 장면을 식별할 수 있습니다. 예를 들어, 소셜 미디어 게시글에서 로고를 찾거나 매장에서 제품을 식별하거나 어셈블리 라인에서 기계 부품을 분류하거나 정상적으로 운영되는 공장과 결함이 있는 공장을 구별하거나 비디오에서 애니메이션 캐릭터를 탐지할 수 있습니다.
이미지를 분석하기 위해 사용자 지정 모델을 개발하는 작업은 시간과 전문 지식, 리소스를 요구하는 중요한 작업이며, 종종 완료하는 데 몇 달이 걸리기도 합니다. 또한 정확한 결정을 내리기 위해 충분한 데이터를 포함하는 모델을 제공하려면 수천 또는 수만 개의 수작업으로 제작된 레이블 이미지가 필요하기도 합니다. 이 데이터를 생성하려면 수집하는 데 몇 달이 걸릴 수 있고, 기계 학습에 사용하도록 준비하는 데 레이블 지정자로 구성된 큰 팀이 필요합니다.
Amazon Rekognition Custom Labels를 사용하면 이 많은 작업을 대신해 드립니다. Rekognition Custom Labels는 여러 카테고리에서 수천 만 개의 이미지로 이미 학습된 Rekognition의 기존 기능에 기반합니다. 수천 개의 이미지 대신, 사용하기 쉬운 AWS 콘솔에 사용 사례에 특화된 작은 학습 이미지 집합을 업로드하기만 하면 됩니다(보통 몇 백 개 미만의 이미지). 이미지에 이미 레이블이 지정된 경우 Rekognition은 몇 번의 클릭만으로 학습을 시작할 수 있습니다. 그렇지 않으면 Rekognition의 레이블 지정 인터페이스에서 직접 레이블을 지정하거나 Amazon SageMaker Ground Truth를 사용하여 자동으로 레이블을 지정할 수 있습니다. Rekognition이 이미지 집합에서 학습을 시작하면 몇 시간 안에 자동으로 사용자 지정 이미지 분석 모델을 생성할 수 있습니다. 그 이면에서 Rekognition Custom Labels는 학습 데이터를 자동으로 로드 및 검사하고, 올바른 기계 학습 알고리즘을 선택하며, 모델을 학습시키고, 모델 성능 지표를 제공합니다. 그런 다음, Rekognition Custom Labels API를 통해 사용자 지정 모델을 사용해 애플리케이션에 통합할 수 있습니다.
사용 사례
기능
고객
-
NFL
-
VidMob
-
Prodege
Prodege는 Swagbucks, MyPoints, Tada, ySense, InboxDollars, InboxPounds, DailyRewards 및 Upromise와 같은 소비자 브랜드와 마케터 및 연구원을 위한 무료 비즈니스 솔루션 제품군으로 구성된 데이터 기반 마케팅 및 소비자 인사이트 플랫폼입니다.